Topology of complements to real affine space line arrangements

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology and combinatorics of real line arrangements

We prove the existence of complexified real arrangements with the same combinatorics but different embeddings in P. Such pair of arrangements has an additional property: they admit conjugated equations on the ring of polynomials over Q( √ 5).

متن کامل

On the Complements of Affine Subspace Arrangements

Let V be an l−dimensional real vector space. A subspace arrangement A is a finite collection of affine subspaces in V . There is no assumption on the dimension of the elements of A. Let M(A) = V −∪A∈AA be the complement of A. A method of calculating the additive structure of H(M(A)) was given in [G-MP] using stratified Morse theory, proving that H(M(A)) depends only on the set of all intersecti...

متن کامل

Topology of Plane Arrangements and Their Complements

This is a glossary of notions and methods related with the topological theory of collections of affine planes, including braid groups, configuration spaces, order complexes, stratified Morse theory, simplicial resolutions, complexes of graphs, Orlik– Solomon rings, Salvetti complex, matroids, Spanier–Whitehead duality, twisted homology groups, monodromy theory and multidimensional hypergeometri...

متن کامل

Topology of Generic Line Arrangements

Our aim is to generalize the result that two generic complex line arrangements are equivalent. In fact for a line arrangement A we associate its defining polynomial f = ∏ i(aix + biy + ci), so that A = (f = 0). We prove that the defining polynomials of two generic line arrangements are, up to a small deformation, topologically equivalent. In higher dimension the related result is that within a ...

متن کامل

Topology of real coordinate arrangements

We prove that if a simplicial complex ∆ is (nonpure) shellable, then the intersection lattice for the corresponding real coordinate subspace arrangement A∆ is homotopy equivalent to the link of the intersection of all facets of ∆. As a consequence, we show that the singularity link of A∆ is homotopy equivalent to a wedge of spheres. We also show that the complement of A∆ is homotopy equivalent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Singularities

سال: 2020

ISSN: 1949-2006

DOI: 10.5427/jsing.2020.22v